Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

sam.nitk.ac.in

nitksam@gmail.com

Advanced Linear Algebra (MA 409) Problem Sheet - 4

Linear Dependence and Linear Independence

- 1. Label the following statements as true or false.
 - (a) Any set containing the zero vector is linearly dependent.
 - (b) The empty set is linearly dependent.
 - (c) Subsets of linearly dependent sets are linearly dependent.
 - (d) Subsets of linearly independent sets are linearly independent.
 - (e) If $a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0$ and x_1, x_2, \ldots, x_n are linearly independent, then all the scalars a_i are zero.
- 2. Determine whether the following sets are linearly dependent or linearly independent.

(a)
$$\left\{ \begin{pmatrix} 1 & -2 \\ -1 & 4 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 2 & -4 \end{pmatrix} \right\}$$
 in $M_{2 \times 2}(\mathbb{R})$
(b) $\left\{ x^3 - x, 2x^2 + 4, -2x^3 + 3x^2 + 2x + 6 \right\}$ in $P_3(\mathbb{R})$
(c) $\left\{ (1, -1, 2), (2, 0, 1), (-1, 2, -1) \right\}$ in \mathbb{R}^3
(d) $\left\{ \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 2 & -2 \end{pmatrix} \right\}$ in $M_{2 \times 2}(\mathbb{R})$
(e) $\left\{ x^4 - x^3 + 5x^2 - 8x + 6, -x^4 + x^3 - 5x^2 + 5x - 3, x^4 + 3x^2 - 3x + 5, 2x^4 + x^3 + 4x^2 + 8x \right\}$ in $P_4(\mathbb{R})$

- 3. In F^n , let e_j denote the vector whose jth coordinate is 1 and whose other coordinates are 0. Prove that $\{e_1, e_2, \ldots, e_n\}$ is linearly independent.
- 4. Show that the set $\{1, x, x^2, ..., x^n\}$ is linearly independent in $P_n(F)$.
- 5. In $M_{m \times n}(F)$, let E^{ij} denote the matrix whose only nonzero entry is 1 in the ith row and jth column. Prove that $\{E^{ij} : 1 \le i \le m, 1 \le j \le n\}$ is linearly independent.
- 6. Recall that the set of diagonal matrices in $M_{2\times 2}(F)$ is a subspace. Find a linearly independent set that generates this subspace.
- 7. Let $S = \{(1,1,0), (1,0,1), (0,1,1)\}$ be a subset of the vector space F^3 .
 - (a) Prove that if $F = \mathbb{R}$, then *S* is linearly independent.
 - (b) Prove that if *F* has characteristic 2, then *S* is linearly dependent.
- 8. Give an example of three linearly dependent vectors in \mathbb{R}^3 such that none of the three is a multiple of another.

- 9. Let $S = \{u_1, u_2, ..., u_n\}$ be a linearly independent subset of a vector space *V* over the field \mathbb{Z}_2 . How many vectors are there in span(*S*)? Justify your answer.
- 10. Let *V* be a vector space over a field of characteristic not equal to two.
 - (a) Let *u* and *v* be distinct vectors in *V*. Prove that $\{u, v\}$ is linearly independent if and only if $\{u + v, u v\}$ is linearly independent.
 - (b) Let u, v, and w be distinct vectors in V. Prove that $\{u, v, w\}$ is linearly independent if and only if $\{u + v, u + w, v + w\}$ is linearly independent.
 - (c) Discuss the part (b) when *V* is a vector space over the field with two elements. [Hint : If *u*, *v* and *w* are linearly independent, show that u + v, v + w and w + v are linearly independent, provided $1 + 1 \neq 0$. Show by an example that the condition $1 + 1 \neq 0$ cannot be dropped.]
- 11. Prove that a set *S* is linearly dependent if and only if $S = \{0\}$ or there exist distinct vectors $v, u_1, u_2, ..., u_n$ in *S* such that v is a linear combination of $u_1, u_2, ..., u_n$.
- 12. Let $S = \{u_1, u_2, \dots, u_n\}$ be a finite set of vectors. Prove that *S* is linearly dependent if and only if $u_1 = 0$ or $u_{k+1} \in span(\{u_1, u_2, \dots, u_k\})$ for some k $(1 \le k < n)$.
- 13. Prove that a set *S* of vectors is linearly independent if and only if each finite subset of *S* is linearly independent.
- 14. Let *M* be a square upper triangular matrix with nonzero diagonal entries. Prove that the columns of *M* are linearly independent.
- 15. Let *S* be a set of nonzero polynomials in P(*F*) such that no two have the same degree. Prove that *S* is linearly independent.
- 16. Prove that if $\{A_1, A_2, ..., A_k\}$ is a linearly independent subset of $M_{n \times n}(F)$, then $\{A_1^t, A_2^t, ..., A_k^t\}$ is also linearly independent.
- 17. Let $f, g \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ be the functions defined by $f(t) = e^{rt}$ and $g(t) = e^{st}$, where $r \neq s$. Prove that f and g are linearly independent in $\mathcal{F}(\mathbb{R}, \mathbb{R})$.
- 18. Find three vectors in \mathbb{R}^3 which are linearly dependent, and are such that any two of them are linearly independent.
- 19. Let *V* be the vector space of all 2×2 matrices over the field *F*. Let W_1 be the set of matrices of the form

$$\begin{bmatrix} x & -x \\ y & z \end{bmatrix}$$

and let W_2 be the set of matrices of the form

$$\begin{bmatrix} a & b \\ -a & c \end{bmatrix}$$

- (a) Prove that W_1 and W_2 are subspaces of V.
- (b) Find the dimensions of W_1 , W_2 , $W_1 + W_2$ and $W_1 \cap W_2$.
- (c) Find a basis $\{A_1, A_2, A_3, A_4\}$ for *V* such that $A_j^2 = A_j$ for each *j*.

- 20. Show that $\{1, \sqrt{2}\}$ and $\{\sqrt{2}, \sqrt{3}, \sqrt{6}\}$ are linearly independent over \mathbb{Q} and that $\{\sqrt{2}, \sqrt{3}, \sqrt{12}\}$ is linearly dependent over \mathbb{Q} .
- 21. Let $x_1, x_2, ..., x_k$ be vectors in F^n and let y_i be the vector in F^{n-1} formed by the first n 1 components of x_i for i = 1, 2, ..., k. Show that if $y_1, y_2, ..., y_k$ are linearly independent in F^{n-1} then $x_1, x_2, ..., x_k$ are linearly independent in F^n . Is the converse true? Why?
- 22. Let *A* be a linearly independent set and $y \notin A$. Prove that $A \cup \{y\}$ is linearly dependent iff $y \in Sp(A)$. Show by an example that linear independence of *A* cannot be dropped.
- 23. Find all the maximal linearly independent subsets of $\{x_1, x_2, ..., x_5\}$ where $x_1 = (1, 1, 0, 1)$, $x_2 = (1, 2, -1, 0)$, $x_3 = (1, 0, 1, 2)$, $x_4 = (0, 1, 1, 1)$ and $x_5 = (2, 0, 2, 4)$ in \mathbb{R}^4 .
- 24. Let *A* be a linearly independent subset of a subspace S. If $x \notin S$, show that $A \cup \{x\}$ is linearly independent. If $B \subseteq V S$ and *B* is linearly independent, does it follow that $A \cup B$ is linearly independent?
- 25. Let Sp(A) = S. Then show that no proper subset of A generates S iff A is linearly independent.
- 26. Give geometric characterizations of $\{x_1, x_2\}$ and $\{x_1, x_2, x_3\}$ being linearly independent in \mathbb{R}^3 . [Hint: collinear/coplanar]
- 27. (a) For what values of α are the vectors $(0, 1, \alpha)$, $(\alpha, 1, 0)$ and $(1, \alpha, 1)$ in \mathbb{R}^3 linearly independent?

(b) Determine all the values of α and β for which the vectors $(\alpha, \beta, \beta, \beta), (\beta, \alpha, \beta, \beta), (\beta, \beta, \alpha, \beta)$ and $(\beta, \beta, \beta, \alpha)$ of \mathbb{R}^4 are linearly dependent.